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Abstract—A method is proposed, which uses the digital image
processing technique to identify cloud boundaries from scanning
Ka-band (∼35.29 GHz) radar imagery dataset. In this method,
a cloud is considered as an uninterrupted region of radar echoes
with radar reflectivity higher than −34 dBZ and area greater than
3 km2. The proposed algorithm involves 1) conversion of radar
RGB image to grayscale by removing white background and noise,
2) identification of cloud boundaries by canny edge detection, and
3) estimation of cloud cross-section area (CCSA) and cloud top
height (CTH) based on the pixel width. This method is effectively
applied to Ka-band radar images collected over Mandhardev, a
high altitude scanning station in the Western Ghats (WGs), India
to derive CTH and CCSA. CTH distribution shows three peaks, one
at about 2 km with others at about 7–8 km, and 12 km. The cloud
occurrence shows an apparent diurnal variation with a maximum
in the afternoon hours while a semidiurnal variation is observed
in CCSA. The proposed method shows consistent statistics with
Global Precipitation Measurement Ka-band radar observations
and thus suitable to build robust cloud climatology over the WGs.
Such cloud statistics are essential to validate the representation of
clouds in weather and climate models.

Index Terms—Cloud, digital image processing (DIP), diurnal,
Ka-band radar, monsoon, Western Ghats (WGs).

I. INTRODUCTION

C
LOUDS can modulate the Earth’s climate and weather

system through their role in the hydrological cycle and

radiative energy budget by reflecting, absorbing, and transmit-

ting the solar radiation [1]. The cloud radiative impact depends

mostly on cloud bulk properties like its altitude of occurrence,

geometrical depth, and spatial distribution. Due to the large

spatial and temporal variability, the accurate representation of
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cloud remains a challenging issue in global climate models and

cloud-resolving models [2]. Therefore, it is worth to study the

3-D structure of cloud to improve our understanding on the role

of clouds in rainfall and Earth’s radiative processes.

Radars operating at millimeter-wavelength are an ideal tool to

observe the cloud with high temporal and spatial resolution. The

millimeter radars are ideally suited for the detection of weak non-

precipitating clouds. The routine measurements of ground-based

millimeter radar can provide information on clouds vertical

structure and can yield statistics of cloud fraction with altitude,

cloud periphery (top and base heights), and radar reflectivity

for various types of clouds [3]. With the advent of scanning

facilities in the radar system, it is now possible to observe the

3-D structure of clouds within the radar surveillance area.

To understand the typical life cycle of cloud systems during

the summer monsoon, Indian Institute of Tropical Meteorol-

ogy (IITM), Pune, India has deployed mobile Ka-band scan-

ning radar in the mountain range of Western Ghats (WGs) at

Mandhardev, India. This radar provides an opportunity to track

different stages in the formation of cloud such as initiation, pre-

cipitation onset, and dissipation [2]. Such investigation would be

helpful to understand the structure, dynamics, and microphysics

of monsoon clouds.

Borque et al. [2] proposed the cloud identification and track-

ing algorithm to objectively identify and track clouds for evalu-

ating cloud variability in time and space. The cloud geometrical

properties can also be extracted by using digital image pro-

cessing (DIP) on the weather radar image. DIP technique has

successfully been applied to many areas like improving image

quality by removing noise [4], medical applications [5], indus-

trial inspection [6], geographic information system [7], human–

computer interfaces [8], radar [9], and satellite [10] meteorology.

In satellite remote sensing, there are several DIP-based algo-

rithms for cloud detection. For example, some satellites identify

cloud based on brightness (radiance) threshold technique where

the pixels above a certain threshold value of intensity are con-

sidered as a cloud [11]. However, this method sometimes has a

caveat of misclassification of clouds due to similar reflectance

from other sources (e.g., highly reflective human-made objects,

sand in deserts, and snow/ice) [12]. Murtagh et al. [13] applied

Bayesian technique using statistical pattern recognition based

on spatial clustering to perform cloud screening on Moderate

Resolution Imaging Spectroradiometer dataset. The fuzzy logic
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algorithm was applied to METEOSAT-5 satellite imageries to

identify cloud cover [14]. Tseng et al. [15] proposed the multi-

temporal cloud detection method to identify cloud boundaries.

The algorithm determines the cloud periphery from previous

image, which defined the cloud. One of the drawbacks of their

method is that the time interval of the reference image should

be close to the observed image for better accuracy. Zhu and

Woodcock [16] proposed a technique Fmask (Function of mask)

for cloud and its shadow detection using Landsat imagery. The

Fmask utilize top of atmosphere reflectances and brightness

temperature to find cloud and cloud shadow mask. Kazantzidis

et al. [17] presented the k-nearest neighbor algorithm and a

binary decision tree for cloud detection from a whole sky imag-

ing system. The method was based on statistical and textural

features. Shi et al. [18] used deep convolutional neural networks

to learn cloud features and generate the cloud probability image.

It predicts the cloud region according to the gradient of cloud

probability map. Gómez-Chova et al. [19] applied statistical ma-

chine learning technique to Proba-V satellite images to identify

the cloud-contaminated or cloud-free samples. Zhong et al. [20]

proposed an object-oriented cloud and cloud-shadow matching

algorithm for satellite imagery to produce the cloud map. Their

method uses the modified automatic cloud cover assessment

method based on the relationship between spectral features of

an image to create cloud maps and cloud-shadow maps. Deng

et al. [21] proposed a method for cloud detection in satellite

images by first using a simple linear iterative clustering algo-

rithm and defining superpixels. Later, they used natural scene

statistic models to distinguish clouds from the surface. Recently,

Mahajan and Fataniya [22] summarized different techniques of

cloud detection from satellite imagery data.

Although there are several studies [11]–[22] on cloud de-

tection and its classification using image processing, however,

there are no extensive studies of DIP application on cloud

radar imagery dataset for estimating cloud properties like cloud

height and its thickness. In this article, we proposed a simplistic

approach of image processing technique to determine the cloud

top height (CTH) and cloud area from Ka-band radar images,

leading to a few requirements for preprocessing and fast conver-

gence. Development of cloud segmentation algorithm for cloud

radar is still an interesting research area. To best of the author’s

knowledge, this is the first study in the Indian region where

CTH and cloud area are estimated from cloud radar images

using image processing technique as a tool, which is unex-

plored and is of interest for the radar community. This article

aims to introduce the conceptual and technical framework of a

methodology, where DIP technique can be used to analyze the

weather radar image (radar images are easily available compared

to the raw/processed radar datasets and requires relatively small

storage space) and identify the cloud to estimate CTH and cloud

cross-section area (CCSA). Cloud area in radar image can be

determined based on intensity value (reflectivity) of pixels since

cloud pixels will have a higher reflectivity than other pixels.

The proposed algorithm works on a platform of Open Source

Computer Vision Library (OpenCV) python for postprocessing

of radar image. One of the applications of this article lies

in utilization of proposed algorithm to build long-term cloud

Fig. 1. Topographical map of the Western Ghats of India generated using Shut-
tle Radar Topography Mission data [23]. Ka-band radar location, Mandhardev
(MDV), is shown with a solid black circle.

statistics using Ka-band radar to validate the representation of

clouds in numerical models over the mountainous terrain. The

structure of the article is as follows. The Ka-band radar system

description is in Section II. The methodology is in Section III.

Distribution of CTH and CCSA are discussed in Section IV.

Section V presents the diurnal variability of CTH and CCSA,

and finally, a summary is given in Section VI.

II. SYSTEM DESCRIPTION

A. Ka-Band Radar

The Ka-band radar is deployed at Mandhardev (18.04°N,

73.87°E, ∼1.3 km above mean sea level) in the WGs of

India. Fig. 1 shows the topography of radar location. The

radar used is a scanning radar having dual-polarization facil-

ity (linearly polarized in horizontal and vertical directions),

manufactured by ProSensing Inc. Amherst, USA. The radar

operates at ∼35.29 GHz and has a low peak-power klystron

transmitter, narrow beamwidth, short pulse lengths, and high-

gain antenna. This radar has a minimum detectable reflectivity

of −45 dBZ at 5 km range. The antenna is mounted on an

elevation-over-azimuth pedestal and designed to rotate con-

tinuously in the azimuth axis and a full 180° in the eleva-

tion axis—horizon to horizon—with a maximum velocity of

20 deg s−1 and a maximum acceleration of 12 deg s−2. The

radar and other supporting hardware are mounted on the flatbed

truck for mobile applications. Technical specifications of the

radar system are provided in Table I and details can be found in

Das et al. [24].

B. GPM-DPR

The Global Precipitation Measurement (GPM) core observa-

tory was launched in February 2014 and carried the first space-

borne dual-frequency precipitation radar (DPR; Ku-band at

∼13.6 GHz and Ka-band at∼35.5 GHz). GPM is a nonsolar syn-

chronous satellite inclined at 65° at an altitude of about 407 km

and has an orbital period of about 93 min. GPM-DPR provides
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TABLE I
CHARACTERISTICS OF THE KA-BAND RADAR SYSTEM

high-resolution 3-D structure of storms which offers a unique

opportunity to examine the vertical structure of storms. Details

of the GPM-DPR can be found at https://pmm.nasa.gov/gpm. In

this article, we used high sensitivity Ka-band scan data to explore

the storm top height, which is one of the standard products (GPM

Level2A Ka) in GPM-DPR. The storm top height is defined

as the altitude of highest range bin that contains precipitating

echoes above the minimum thresholds [25].

III. METHODOLOGY

A. Software Used

In this article, the OpenCV library [26] and Python are used for

processing the radar imagery data. Along with OpenCV, other

libraries such as NumPy, multiprocessing, and matplotlib are

used. These libraries are well suited for developing a scientific

application where lots of numerical processing, data plotting,

and multithreading are required.

B. Preprocessing on the Radar Image

Preprocessing is a method of converting raw data into an

appropriate format so that it can be processed further by the main

algorithm to achieve the results. The proposed cloud detection

method is based on the color separation technique, in which the

radar imagery data is considered as an input. The radar image

should be in portable network graphics (PNG) or bitmap format

due to their lossless compression codecs.

Fig. 2(a) shows the horizon-to-horizon scan of radar reflec-

tivity factor (dBZ) obtained from Ka-band radar measurement

on a typical day of August 3, 2016, at 0855 UTC (LT =

UTC+0530 h). The colors on image represent different radar

echo intensities (reflectivity) measured in dBZ. Clouds are de-

fined in terms of pixels in radar image. Each pixel can be treated

as a rectangular area with a predefined value. Here, the length

and width of the pixel are 0.01 km and 0.04 km, respectively. The

X-Y grid frame in the input image is extracted using a background

subtraction method provided by OpenCV. The X-Y grid frame is

considered as a closed rectangle and treated as a contour. The ex-

tracted X-Y grid frame (specifying the distance from radar along

X- and Y-axis in km) is used to find out the dimensions of contour.

Fig. 2. Different steps in identifying the cloud echoes from cloud radar image.
(a) Radar reflectivity (dBZ) during the horizon-to-horizon scan of Ka-band
radar. (b) Binary image obtained after converting RGB image to HSV color
space. (c) Background is eliminated from the input image. (d) Image converted
to grayscale. (e) Cloud echoes identified by using the Canny method of edge
detection. (f) Defined clouds with boundaries.

The dimensions of X- and Y-axis in pixels are used to calculate

the pixel area and hence used to estimate the CCSA. The CCSA

is the horizontal area covered by cloud within the radar horizon-

to-horizon scan region. The number of pixels enclosed within

the contour can be calculated using image moments. CCSA can

be obtained by multiplying the total number of cloud pixels

with the area of each pixel. In this article, the area of 1 pixel

corresponds to about 0.0004 km2. The mathematical equation

used for CCSA is as follows:

CCSA =
∑

i,j

xi × yj (1)

where x and y are the width and length of the pixel, respectively,

and i and j indicate the number of pixels in the column (along

X-axis) and row (along Y-axis), respectively, qualified as a part

of the cloud.

CTH is the height of the top-most point of cloud. The CTH is

measured in number of pixels that lies between top-most point

of cloud and x-axis in that column. By multiplying the total

number of pixels of CTH with the pixel length (y) in km gives

CTH in km. The CTH can be mathematically expressed as

CTH = max

⎛

⎝

∑

i,j

yj

⎞

⎠ . (2)
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The radar reflectivity image in Fig 2(a) contains impulsive

noise, which appears as small colored dots on the image.

Such noise occurs due to unavoidable factors (e.g., hardware

equipment, spectral bins below the signal-noise ratio threshold,

celestial radiation wave, clutter, and other interferences). The

noise components from the image are filtered by performing

erosion and dilation operations. The erosion operation removes

random noise present in the picture, whereas dilation operation

recovers the information lost during the erosion process. So the

combinations of erosion and dilation operations remove small

objects from the image and smooth the border of larger objects.

It is noted that erosion and dilation will introduce errors in

the shape and area of cloud. However, the amount of error

present will depend upon the size of erosion and dilation kernel

(convolution matrix) used. In this article, we used a square 5

element kernels, which will cause an error of maximum of 4

pixels. Any structure of 4 × 4 pixels or less will be entirely

eroded as the kernel size is 5 × 5. The error in CTH estimation

due to erosion and dilation process is always less than ±0.05 km

(for a 5 element kernel).

For the erosion and dilation operations, the input image should

be in binary format. The binary image format can be obtained by

converting the radar image (in RGB) into HSV color space with

discrete values. A binary image is created by considering the

full range of HSV color, as shown in Fig. 2(b). Such conversion

technique also supplements the removal of spurious radar echoes

such as insect returns or other nonhydrometeor targets. The

binary image is then ANDed with background subtracted image

to get the background eliminated image [Fig. 2(c)] which is

free from the noise. Fig. 2(c) shows the colored blobs of clouds

separated from the white background as well as noise.

C. Local Thresholding

The image obtained after removing impulsive noise [Fig. 2(c)]

is used to create the mask for radar image in HSV color space

using local thresholding technique. The local thresholding pro-

cedure is applied to separate the cloud boundary. Here, radar

reflectivity factor is used as the threshold parameter. The choice

of a threshold value is user-defined because automatic detection

may lead to false detection, and also the learning algorithm

takes a significant amount of time and memory. In this article,

a threshold of −34 dBZ (as the detection capability of IITM’s

Ka-band radar is about−35 dBZ at 15 km) is considered. When a

threshold value is provided, the algorithm produces two masks,

namely 1) the entire cloud, and 2) the cloud-free region. By

performing high-pass filtering with the threshold value, we can

get the cloud mask. These masks are used for error minimization

from RGB to grayscale conversion in adaptive thresholding.

D. Adaptive Thresholding

To estimate the area covered by cloud in X-Y plane, it is

necessary to identify the cloud peripheries. The Canny edge

detection method is used to find the cloud boundaries. The

parameters for Canny edge detection are source image, resultant

image, lower, and upper thresholds for edge detection. The

Canny edge detection method is similar to the high-pass filtering

of an image in which edges or boundaries between two objects

are highlighted by suppressing all other regions with lower

spatial frequency [27]. It is well known that the cloud reflectivity

changes dynamically, and thus, the color intensities at the border

separating cloud and background is different. Therefore, the

resultant output will be noisy or may produce inconsistent or

broken contour outline due to static canny thresholding method.

This issue can be resolved using the dynamic thresholding

(adaptive thresholding) method. First, the image is converted

from RGB to grayscale. The conversion from RGB to grayscale

image can introduce losses in the grayscale image. This can be

minimized by superimposing the cloud mask on the grayscale

image. The grayscale image is ANDed with the cloud mask cre-

ated using local thresholding. Fig. 2(d) shows a typical example

of converting the RGB image to grayscale. In case, if the radar

reflectivity image is available in grayscale, then the grayscale

image can directly be superimposed with the cloud mask. Hence,

the present algorithm provides the choice of using either RGB

or grayscale image as per the availability/convenience. After

applying local thresholding, the adaptive thresholding technique

is used so that every pixel is separated by a different thresh-

old value depending on its local group [28], [29]. Fig. 2(e)

shows the result of adaptive thresholding technique on radar

image. This technique will separate the cloud neatly from the

image.

E. Cloud Detection and Identification of Cloud Boundaries

The cloud contours are obtained because of the adaptive

thresholding. The extreme contour retrieval method is well

suited for cloud contour detection as only the outer shape of

the cloud plays an essential role during area calculation. Every

contour obtained from adaptive thresholding is the boundary of

a cloud, and thus these contours can be now treated as a cloud.

Fig. 2(f) shows the radar reflectivity image marked with the

cloud boundaries obtained using DIP technique. Here, six cloud

systems (represented as I, II, III, IV, V, and VI) are identified with

well-defined boundaries. The number of pixels enclosed within

the contour can be calculated using image moments, and are

used to estimate CCSA. The contours with an area smaller than

user-defined threshold area are not considered as a valid cloud.

Such contours are only highlighted, however not considered for

further calculations. In the present study, a threshold value of

3 km2 is used to calculate CCSA. The area of five cloud systems

is about 37.9, 11.9, 3.3, 28.7, and 3.7 km2, respectively. However,

cloud VI is not considered as valid since the calculated area is

less than the threshold area of 3 km2.

To calculate the CTH, a bounding rectangle (rectangle sur-

rounding the cloud) is created based on the weighted mean

(centroid) of cloud area. CTH is calculated as the difference

between uppermost point on the bounding rectangle and X-axis

in that column. The CTH for cloud I, II, III, IV, and V are

calculated as about 9.8, 2.9, 7.7, 1.8, and 1.8 km, respectively.

Fig. 3 shows the workflow of proposed method for the detection

of CTH and CCSA from Ka-band radar imagery data.
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Fig. 3. Flowchart of proposed algorithm for cloud detection from Ka-band
radar image.

IV. DISTRIBUTION OF CTH AND CCSA

Investigating the vertical distribution of cloud features like

CTH and CCSA is of importance as these parameters can

provide a valuable dataset for understanding the role of clouds

in modifying the radiative and latent heating rates within the

atmosphere [30].

The CTH is derived from horizon-to-horizon scans of Ka-

band radar for August–September, 2016. The CTH distribution

retrieved from the present algorithm is compared with the GPM

Ka-band radar storm top height. The GPM overpass data are

considered over the study site during August and September

of 2014–2019. For GPM data comparison, we defined a region

around radar site to compile statistics from 1° × 1° latitude-

by-longitude box centered on radar site. The spatial grid box

for comparison is selected in such a way that there is a balance

between an area large enough to collect the sufficient number of

samples and small enough to be representative of radar site.

A total of 7275 and 5336 cloud cases have been identified

from Ka-band radar and GPM Ka-band measurements, respec-

tively. Since these comparative evaluations between ground-

based radar and GPM Ka-band radar were of accumulation over

longer periods rather than snapshot measurements, the results

can be compared to examine the variability. For comparison,

three different regions are selected: Region 1 (R1: below 3.5 km),

Region 2 (R2: 3.5–8 km), and Region 3 (R3: above 8 km).

These three regions are chosen to demonstrate the consistency

between IITM’s Ka-band radar and GPM Ka-band storm top

heights below bright band (rain region), mid-level dominated

Fig. 4. Box and whisker plot distribution of CTH and storm top height from
Ka-band radar, and GPM Ka-band radar, respectively, in different regions. Here,
the box represents 25 and 75 percentile of the data, and whiskers show the
data within 1.5 times the interquartile range. The horizontal line within the box
represents the median value of the distribution.

by mixed-phase, and high-level dominated by ice phase, re-

spectively. Fig. 4 shows the box plot distribution of CTH from

Ka-band radar and GPM Ka-band radar in the three regions.

Here, all the heights are above the ground level. It is clear that

in the regions R1 and R2, the CTH distributions from Ka-band

radar are consistent with GPM Ka-band radar. The median value

of CTH is nearly the same in both measurements in R1 and

R2. The median value of CTH is about 1.8 km (1.9 km), and

4.6 km (4.8 km) in Ka-band (GPM) observations in regions R1,

and R2, respectively. However, in region R3, the Ka-band radar

shows a larger distribution and higher median value of CTH

compared to GPM Ka-band radar measurements. The median

value of CTH is about 11.3 km in Ka-band radar, whereas, it is

about 8.9 km in GPM Ka-band. This could be due to the lower

sensitivity of GPM to weak reflectivities at higher levels. The

GPM Ka-band sensitivity is about 12 dBZ [25] and hence, it

has a limitation to detect storms above 8 km altitude, compared

to ground-based Ka-band radar (sensitivity of about −35 dBZ

at 15 km). Even though both the radars (GPM Ka-band and

ground-based Ka-band radar) have nearly the same operating

frequency, one to one matching between their measurements is

quite difficult. This mismatching is due to differences in view-

ing aspects between space and earth observations, propagation

paths, resolution volume size, measurement sensitivity, and time

synchronization mismatch [31], [32]. The mean and standard

deviation of CTH and storm top height from Ka-band radar and

GPM are provided in Table II.

To evaluate the CTH obtained from Ka-band radar in R3,

the CTH distributions are compared with cloud profiling radar

(CPR) at W-band (∼94 GHz) on-board the National Aeronautics

and Space Administration cloud observing satellite (CloudSat)

(figure not shown). The CloudSat CPR is a nadir-viewing sun-

synchronous satellite, orbiting the Earth’s atmosphere at an

altitude of about 705 km with an inclination angle of about 98°

(refer to http://cloudsat.atmos.colostate.edu). For comparison,

the CPR measurements (GEOPROF-LIDAR product) are con-

sidered (1° × 1° latitude-by-longitude box centered on radar

site) during August and September of 2006–2010. It is observed
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TABLE II
STATISTICAL PARAMETERS, MEAN, AND STANDARD DEVIATION OF CTH AND

STORM TOP HEIGHT DERIVED FROM KA-BAND RADAR AND GPM IN

DIFFERENT REGIONS

Fig. 5. (a) PDF of CCSA (km2) for the period August–September, 2016.
(b) Distribution of CTH with mean CCSA.

that the median value of CTH is about 11.4 km in CPR data,

indicating a good agreement between CPR and ground-based

Ka-band radar measurements. It should be noted that despite the

different operating frequencies of Ka-band radar and CPR, the

CTH distributions are quite consistent. So the DIP method for

cloud detection shows the results consistent with the space-borne

radar measurements and climatology [33]–[35] indicating the

robustness of present algorithm.

Fig. 5(a) shows the histogram of CCSA obtained from Ka-

band radar measurements. It is observed that the distribution

of CCSA decreases exponentially. The CCSA has maximum

distribution below 20 km2. The distribution of CCSA is within

the radar surveillance area. There may be some cases where the

cloud is detected by radar; however, it may be extended beyond

the radar coverage area. Fig. 5(b) shows the distribution of CTH

as a function of CCSA. It is observed that the shallow clouds

have limited CCSA (<40 km2), whereas the taller clouds are

widespread. This finding is consistent with Utsav et al. [36] that

the shallow clouds are isolated pockets of convection forms in

the WGs region. The clouds at higher heights are mostly cirrus

and/or stratiform-anvil clouds, which usually covers a larger

area.

V. DIURNAL CYCLE OF CTH AND CCSA

Understanding the diurnal cycle of clouds is important as

they influence the diurnal energy of the Earth’s atmosphere and

surface. However, investigation of diurnal variation of clouds is

limited due to the nonavailability of data with good temporal

Fig. 6. Vertical distribution of CTH at 6 h interval. The magnified profile
during 12–18 LT is shown in the inset.

and spatial resolution [37]. The Ka-band radar provides high

temporal and spatial resolution data which makes it possible

to study the diurnal cycle of clouds. To understand the temporal

evolution of CTH on a diurnal timescale, 6 hourly distribution (to

ensure a sufficient number of data in each profile) of CTH along

with the mean distribution is shown in Fig. 6. Two dominant

peaks in the CTH distribution are observed: one at about 2 km

and other at about 12 km in the mean CTH. The clouds at 2 km

represent the shallow (clouds with tops below 0˚ isotherms)

clouds and at 12 km may be associated with deep convection,

anvil or cirrus. Das et al. [38] and Utsav et al. [36] also observed

the dominance of shallow clouds during monsoon in the WGs

region. It should be noted that Ka-band radar signals are often

attenuated in moderate and heavy rain rates associated with

deep clouds, so the actual CTH distribution at higher height

may be little higher than estimated [39]. At about 7–8 km,

the third peak in CTH distribution is observed, however weak

it is. The tri-mode distribution in the CTH is consistent with

the climatology of cloud radar data from the Manus ARM site

[33] and CloudSat data [34], [35]. The tri-modal distribution

is also evident in the radar measurements from Tropical Ocean

Global Atmospheric Coupled Ocean-Atmosphere Response Ex-

periment [40]. The CTH distribution shows a similar pattern in

each 6 h interval compared to the mean distribution. The CTH

distribution increases from ground and reaches its maximum at

about 2 km above the ground level. Above this, the distribution

decreases with height, and a secondary peak is observed at about

12 km above the ground. Interestingly, a third maximum in

the CTH distribution is observed only during 12–18 LT. The

third peak is observed at about 7 km above the ground level

(magnified profile is shown in the inset). This may be due to the

presence of cumulus congestus clouds associated with the solar

insolation during day time. The cloud occurrence is maximum

at about 2 km during 06–12 LT and minimum during 12–18

LT. This result indicates that the shallow cloud occurrence is

maximum in the morning time, representing the oceanic or

maritime convection [41], [42]. Whereas at higher levels, about

12 km, the distribution is maximum in mid-night (00–06) h. The

midnight peak can occur due to large-scale organized systems,

as discussed by Rao et al. [43].

Fig. 7(a) shows the composite diurnal pattern of cloud dis-

tribution observed by Ka-band radar during August–September,



1854 IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 14, 2021

Fig. 7. Composite diurnal cycle of (a) cloud occurrence and (b) mean CCSA
(km2).

2016. The observation shows a clear diurnal cycle centered in

the afternoon hours (15–17 LT), in addition to the second peak

at mid-night hours (23–24 LT). The afternoon peak is consistent

with the diurnal pattern of surface and boundary layer processes.

Due to solar insolation and local thermally forced circulations,

convection typically initiates over elevated terrain of the WGs

during afternoon hours. Ustav et al. [36] from ground-based

X-band radar observations in the WGs region showed that more

number of convective storms occurred during 14–15 LT. Late

afternoon peak is in agreement with several other studies using

Tropical Rainfall Measuring Mission precipitation data [43],

[44] and with regional model study by Flynn et al. [45]. The

midnight peak can occur due to large-scale organized systems, as

discussed by Rao et al. [43]. Our finding of mid-night peak also

supports the results of Utsav et al. [36] where they found a second

peak in vertically integrated liquid (liquid water content within

the storm) in the mid-night hours apart from the highest peak in

the evening hours (16–17 LT). Using Cloud-Aerosol Transport

System lidar data during summer, Noel et al. [46] observed

the vertical cloud profiles over different regions in the globe.

They found a similar bi-modal distribution of clouds in 15–30°N

latitude. The diurnal cycle of clouds observed in this article also

supports the results obtained by Lang et al. [47] and Johnson

et al. [48] during the North American Monsoon Experiment.

Fig. 7(b) shows the diurnal cycle of CCSA. Interestingly, CCSA

has a semidiurnal pattern with the first peak at about 17–18

LT and a second peak at about 04–05 LT. It is observed that

the morning minimum in CCSA (∼11 LT) lags the minimum of

cloud occurrence (∼06 LT) by 5 h. Whereas, the night minimum

in CCSA (∼23 LT) lags the minimum of cloud occurrence (∼22

LT) by 1 h.

VI. SUMMARY

This study proposed a method to identify cloud boundaries

and estimate CTH and CCSA by utilizing DIP technique on

scanning Ka-band radar imagery data. The algorithm is based

on OpenCV and Python software. The horizon-to-horizon scans

of Ka-band radar image (in PNG format) is considered. The

binary masking and converting the image to grayscale removes

the white background and noise from the image. Further, the

Canny edge detection and adaptive thresholding techniques are

used to identify and extract the boundary of each cloud layer. A

cloud layer is determined based on a region having a contiguous

set of pixels exceeding the reflectivity of −34 dBZ and area

greater than 3 km2.

The main application of this method lies in examining the

CTH and cloud horizontal distribution in 2-D space, which is

defined as CCSA. Two months (August–September, 2016) of

scanning Ka-band radar data are analyzed with DIP algorithm

to determine CTH and CCSA. The distribution of CTH showed

two climatological peaks: one in the lower troposphere at about

2 km and other in the upper troposphere at about 12 km. In

addition, a third peak in mid-troposphere at about 7–8 km is also

evident in the CTH distribution. The CTH distribution obtained

from the proposed algorithm matches well with the storm top

height measurements of GPM Ka-band radar. The CCSA shows

an exponential distribution with a majority of clouds cover less

than 20 km2. The diurnal cloud variation shows an afternoon

peak, however, a semidiurnal variation is observed in the CCSA.

The proposed DIP method provides a framework to identify

CTH and CCSA in the cloud radar imagery data without in-

volving complicated numerical techniques. The observational

evidence of CTH and CCSA distribution can be helpful to

deduce the skill of models (numerical weather prediction and

general circulation model), in reproducing the observed cloud

distribution over complex mountainous terrain.
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