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Abstract: The automatic detection and recognition of anomalous events in crowded and complex
scenes on video are the research objectives of this paper. The main challenge in this system is to create
models for detecting such events due to their changeability and the territory of the context of the
scenes. Due to these challenges, this paper proposed a novel HOME FAST (Histogram of Orientation,
Magnitude, and Entropy with Fast Accelerated Segment Test) spatiotemporal feature extraction
approach based on optical flow information to capture anomalies. This descriptor performs the
video analysis within the smart surveillance domain and detects anomalies. In deep learning,
the training step learns all the normal patterns from the high-level and low-level information.
The events are described in testing and, if they differ from the normal pattern, are considered
as anomalous. The overall proposed system robustly identifies both local and global abnormal
events from complex scenes and solves the problem of detection under various transformations with
respect to the state-of-the-art approaches. The performance assessment of the simulation outcome
validated that the projected model could handle different anomalous events in a crowded scene and
automatically recognize anomalous events with success.

Keywords: anomaly detection; appearance; deep learning; motion estimation; spatiotemporal

1. Introduction

Anomaly detection implies the identification of events in the data that do not conform to the
expected normal behavior [1]. There are numerous applications for anomaly detection such as fraud
detection, intrusion detection for cyber security, etc. In recent years, video-based anomaly detection
has become a major research topic due to its valuable applications in day-to-day social activities [2,3].

Generally, a deviation from a normal scenario is termed as an anomaly [4,5]. In the last few
decades, researchers have identified the activities of jumping, running, and waving as anomalies
from high-resolution videos [6–8]. If such approaches are applied in low-resolution videos, the
details are not correctly visible and achieve a noisy trajectory [9,10]. Therefore, anomaly detection
in a low-resolution video is a challenging task. Continuously monitoring and identifying abnormal
activities on a surveillance video is tedious work for humans; it is especially difficult in crowded
scenes [11,12]. Automatic anomaly detection is a new technology which overcomes the existing
drawbacks [13,14].

Localizing the anomaly event automatically in a dynamic area and in crowded scenes is the most
complex task. Due to the spatial and temporal dimensions, both the appearance and movement data
can be encoded. In spatial representation, proximity is important, so anomaly localization is critical.
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The existing techniques [15–19] can identify only a few pixels due to the changing density of objects
in crowded scenes, low resolution, and inter-object occlusions during surveillance video monitoring,
making the work more complex and challenging [20]. There are different existing approaches applied
to address these difficulties such as sparse representation, optical flow information, spatiotemporal
context representation, trajectory modeling, etc.

This paper presents a novel spatiotemporal HOME-FAST (Histogram of Orientation, Magnitude,
and Entropy with Fast Accelerated Segment Test) descriptor to detect abnormal activity from
the video surveillance database based on video motion and appearance. The proposed work
comprises pre-processing, feature extraction, and classification for detecting the anomaly event. In the
pre-processing step, first, the training and testing frames are separately divided into non-overlapping
blocks. Each block is filtered using a Gaussian smoothing filter to remove the noise present in the
dataset. The proposed work mainly focuses on feature extraction to locate abnormal behaviors
such as fighting, accidents, robberies, etc. Before the feature extraction, foreground estimation is
performed on the image, as extracting features from the whole image is computationally expensive.
Then, the magnitude, orientation, velocity, and interest points for the cuboids are extracted using the
HOME-FAST feature descriptor. The extracted high-level (motion and appearance) features and the
low-level input frames are fed as input to the Deep Neural Network (DNN), which uses pre-training
and fine tuning to categorize the input features. Finally, a performance analysis is given for the
state-of-the-art methods to show the contribution of the proposed approach. As compared to the
state-of-the-art approaches, the research methodology achieves a better performance in terms of
accuracy, Equal Error Rate (EER), and processing time in dense crowds and complex scenes.

The remainder of the paper is structured as follows. In Section 2, recent works related to video
anomaly detection are discussed. In Section 3, the proposed work with the novel feature extraction
technique to detect the anomalous behavior is presented. Next, the after-effect of the proposed strategy
and its suggestions are examined in Section 4. The overall conclusions for the novel anomaly detection
framework are given in Section 5.

2. State-of-the-Art Anomaly Detection Methods

This segment examines a portion of the current related works for anomaly detection. Existing
works have identified events based on feature extraction, clustering and trajectory analysis, supervised
learning, unsupervised learning, and deep learning.

2.1. Feature Extraction

Features have been employed to detect anomalous activities in previous studies. Zhang et al.
ignored the problem of traditional feature extraction techniques for automatic violence detection [21].
They proposed a novel element descriptor called the Motion Weber Local Descriptor (MoWLD) to detect
the motion images. The WLD descriptor was extended by adding some additional appearance features
with time-based components which catch nearby movement data, low-level appearance information,
and local motion information. Moreover, a non-parametric Kernel Density Estimation (KDE) was also
used to remove the irrelevant and redundant information. Sparse coding and max-pooling were used
to attain discriminative features. This method achieved a detection result with an Area under the
Curve (AUC) of 94% on a crowd violence dataset.

Bertini et al. proposed an unsupervised approach based on spatiotemporal features to recognize
contextual anomalies [22]. A multiscale ongoing non-parametric approach for oddity recognition
was proposed by the author. They developed a method to update the scene statistics to solve the
problem of high variability in unusual events. The main drawback of their approach was that they
failed to extract the high-level information from local regions. An average 32% EER was achieved
by the multiscale method on University of California San Diego (UCSD) Pedestrian (Peds) datasets.
The spatial complexity of the input sequences made the feature extraction algorithm very complex to
model anomalies in an unconstrained environment.
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2.2. Trajectory Analysis and Clustering

The dynamic information can be described in trajectory analysis for abnormal event detection.
This approach mainly evaluates the similarity between the trajectories.

Kumar et al. mainly focused on the direction investigation to detect the anomaly with a novel
hierarchical clustering algorithm called the Visual Assessment of Tendency (VAT) [23]. Extension of
the VAT also proposed a novel two-stage trajectory analysis named iVAT+ and clusiVAT+ for direction
anomaly recognition. A thresholding approach was used to divide the VAT-generated minimum
spanning tree. According to the generated path in a cluster, usual or abnormal patterns are classified
based on trajectories. The trajectories approach is classified as a two-stage clusiVAT clustering method.
In the first stage of clustering, the direction is not considered, but the second stage of clustering uses
the trajectory direction and divides the clusters. Due to the presence of occluded objects, the tracking
methods performance may become degraded in complex and crowded scenes.

2.3. Supervised Learning

Supervised learning methods mainly focus on the discriminating concept classes. Leyva et al. [24]
presented an online structure for video irregularity identification. In their approach, the size of the
feature set was limited as they only processed the limited support regions according to the scene
changes. First, the foreground information and optical flow features were extracted. Then, the
abnormal event detection with an interference mechanism including Markov chains, a bag of words,
and the Gaussian mixture model were used to extract the compact feature.

Zhang et al. [25] introduced a novel technique that coordinated the movement and appearance
factors to identify irregular objects and practices in the video. The statistical histogram was used for
modeling the ordinary movement of dispersions and proposed the idea of “cut-bin” in histograms to
recognize uncommon movements for motion anomaly identification. Then, they developed a novel
arrangement called the Support Vector Data Description (SVDD) for appearance anomaly detection.
A spherical boundary was formed around the normal objects to identify the abnormal events. These two
reciprocal motion and appearance factors were finally joined to accomplish more complete recognition
results. The supervised approaches ignore the unlabeled data during the training phase.

2.4. Unsupervised Learning

Unsupervised learning approaches have also received increasing approval to perform anomaly
detection tasks with unknown distributions. Bao et al. also proposed an unsupervised approach for
detecting and localizing abnormal events to extract the high-level information from local regions and
model the relationship in the spatial domain [26]. A revised form of Principal Component Analysis
Network (PCANet) was used to extract higher-level features from video frames. The EER of the frame
level was up to 10% and a pixel-level EER of 18% was found for the UCSD Peds2 dataset.

Xu et al. proposed an unsupervised hierarchical activity-pattern discovery framework for both
the global and spatiotemporal contexts in a scene [27]. The input motion pattern in the abnormal event
was identified using a unified anomaly energy function. The AUC for anomaly detection on the UCSD
dataset was 86.8%. The unsupervised learning required labeled data to guide the model generation as
the detection performance was degraded due to the false matches.

2.5. Deep Learning

Deep learning succeeded in anomaly detection by overcoming the limitations in the state-of-the-art
techniques. Feng et al. proposed automatic event detection based on an unsupervised deep Gaussian
Mixture Model (GMM) [28]. First, the PCANet extracts the motion and appearance features from
three-dimensional (3D) gradients. Then, the pattern model generated using deep GMM has many layers
with normal events. The probability in the testing stages is ascertained to judge the abnormal event in a
video. Ribeiro et al. proposed deep convolutional auto-encoders to learn features automatically during
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the training process [29]. The authors additionally proposed a strategy for aggregating high-level
spatial and temporal features with the input frames to explore how they influence the convolutional
auto-encoders (CAE) execution. They tried a new way to fuse low-level with high-level information
using CAE with an AUC of 84.7% and an EER of 24.5% on the UCSD Peds2 dataset.

Xu et al. exhibited a novel unsupervised deep learning approach called Appearance and Motion
DeepNet (AMDN) to learn the features automatically. Their work was a double fusion framework
that combines the advantages of early combination and late combination [30]. Stacked denoising
auto-encoders are used as an early fusion approach to learn both the appearance and motion patterns.
Then, the anomaly score for each input is predicted using a multiple one-class Support Vector Machine
(SVM) model as a late fusion strategy. The combination of appearance and movement pipelines was
expressed at the outline level EER of 18% and AUC of 89.1% on the UCSD Peds1 dataset.

Carlos et al. [31] introduced a Magnitude-Orientation Stream (MOS) for activity detection. First,
they used the concept of very deep two-stream to learn the magnitude and orientation data. Then,
they incorporated that magnitude and orientation information as input to the neural network using
the late fusion approach. Their algorithm mainly focused on activity detection. The feature extraction
was not well suited for anomaly detection due to its simple features.

3. Deep Learning with HOME-FAST Spatiotemporal Descriptor for Abnormality Detection

The primary goal of the paper was to recognize patterns and classify anomalous events in crowded
videos. One of the challenging issues in creating a model for detecting abnormal events is the volatility
and dependency on the information of the scene. So, a spatiotemporal feature descriptor was proposed
to recognize such patterns.

First, the input video is separated into a set of training and testing cuboids as non-overlapping
n ×m × t blocks, as shown in Figure 1. The proposed architecture is partitioned into the preparing
and testing stage. In both phases, first, the frames are admitted to Gaussian filtering. After performing
Gaussian smoothing, the foreground parts are extracted from a video. Then, the proposed HOME-FAST
feature extractor extracts the motion and appearance features to identify the anomaly. This feature
descriptor extracts the high-level features and uses them as input to the DNN along with the low-level
information (input frames) to classify normal and abnormal events in the video. In the training phase,
the feature descriptor at the spatial location is kept as a normal pattern at a particular spatial region.
In the testing phase, the deep learning approach searches for a similar pattern from a training pattern.
The events are considered as abnormal if none of the similar patterns are present.

Figure 1. Architecture of the proposed deep learning with the HOME-FAST (Histogram of
Orientation, Magnitude, and Entropy with Fast Accelerated Segment Test) Spatiotemporal Descriptor
for anomaly detection.
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3.1. Input Database

The surveillance videos from UCSD, Avenue, and Live Videos (LV) datasets, as described in
Section 4, were used for the evaluation of the proposed method. Events such as accidents, illegal
activities, and hazardous circumstances are included in the dataset. The input video is represented by
Equation (1):

v g = xg (t)
∣∣ g = 1, 2 ...M (1)

where v g is the g-th input video in the database; xg (t) is the t-th frame from the video; and M
represents the total number of videos in the database.

The procedural flow of the proposed work is divided into training and testing phases. The training
phase learns the normal patterns and the events that differ from the trained patterns are considered
as abnormal during the testing phase. The following steps were applied to both the training and
testing phases.

3.2. Pre-Processing

Initially, the video is divided into spatiotemporal or non-covering n ×m × t areas, alluded to as
cuboids. This will decrease the computational time while finding the comparable vector feature for the
matching process in an image.

Then, a Gaussian smoothing filter is applied to improve the depth map to minimize the noises,
occlusion, illumination, and clutter. The isotropic Gaussian function G(l, m) for the l-throw and m-th
column can be represented by Equation (2):

G(l, m) =
1

2Π ∈2 e−
l2+m2

2∈2 (2)

The standard deviation of the distribution is denoted as ∈. The above two-dimensional (2D)
distribution function can be used as a point spread function. Since the image is stored as an
accumulation of discrete pixels, it has to be recreated as a discrete approximation to the Gaussian
function before performing the convolution. The feature extraction on each pixel in the entire image is
computationally expensive. Here, the frontal area estimation is performed by creating a binary mask.
The image subtraction is performed on the cuboids by setting up a threshold to gather all of the moving
pixels. First, the image subtraction is performed between frame xg and frame xg+n for each pixel on
the cuboid by creating a binary mask. In this procedure, the difference process is considered by setting
a threshold value T with certain conditions (i.e., the pixel is discarded if the resultant difference is less
than T; or else the corresponding pixel value is added to the matching cuboids). Thus, the moving
pixels of each cuboid are extracted using the foreground estimation.

3.3. Spatiotemporal HOME-FAST Feature Extraction

In this paper, a novel spatiotemporal feature extraction technique was developed that deals with
the data in both space and time. This information gives the location of objects moving over invariant
geometry (known as moving objects). First, the Kanade-Lucas-Tomasi (KLT) feature tracker [32] was
used to extract the optical flow information. Optical flow is the outline for the apparent movement
of objects, surfaces, and edges in a visual scene caused by the relative motion between a viewer and
a prospect.

The optical flow information was extracted for each pixel. This feature tracking algorithm uses
the spatial intensity information to track the object position over multiple frames from spatiotemporal
image brightness variations. Normally, the optical flow estimate takes such a long time that real-time
object tracking is difficult to realize. To overcome such drawbacks, a parallelization method was used
after the optical flow estimation for consuming time. A method of parallelization was used in which
the estimated optical flow results are divided into several regions that can be executed in parallel, thus
avoiding a long time delay during the execution of real-time object tracking.
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3.3.1. HOME (Histogram of Orientation, Magnitude, and Entropy)

The proposed HOME feature extraction builds a magnitude, orientation, and entropy
representation for each cuboid. First, the proposed HOME uses the orientation, magnitude, and
entropy representation to create a feature model for each cuboid. Each cube, after extracting the
Kanade-Lucas-Tomasi (KLT) information can be defined as O× (M + 1)× E, where the number of
magnitude, orientation, and entropy ranges can be specified as O, M, and E, then “+1” is specified as
some of them exceeded the range of magnitude. Afterwards, the resultant optical flow information
vectors form a 3D matrix with the orientation, magnitude, and entropy feature vectors.

Magnitude and orientation estimation: For each target scene, the magnitude of each bin from its
motion vectors can be patched to corresponding M bins. Given the sorted magnitude histogram Hp
and the “cut-bin” number TP of a certain point P, we measured the magnitude abnormality of a new
observation in this pixel position based on the relationship between the bin it falls in and the cut-bin.
The magnitude abnormality of the observation is computed as:

M =

 0 0 < K ≤ TP

wP

[
1− Sk

max (∑L
i=TP+1 Si , 1)

]
TP < K ≤ L

(3)

where K is the sequence number of the bin in which the new observation falls, L is the sequence
number of the last bin for the sorted histogram, and Si represents the value of the i-th bin.

The likelihood of the test data being anomalous is inversely proportional to the frequency it
appeared in the training videos. wp is the weight calculated by a sigmoid function with Tp and K as
parameters to control the abnormal degree in terms of the specific position.

wP =
1

1 + exp(−λ1 · (K− TP))
(4)

where λ1 is the scale parameter. Similar to the irregular speed detection, the direction abnormality
(orientation O) of pixel P is calculated based on the “cut-bin” of the direction histogram.

Entropy estimation: There may be a great chance to detect the normal scene as an abnormal event
if the displacement and direction respectively change. In order to consider both the direction and
displacement carefully, the entropy calculation is a necessary step.

The Shannon entropy of each frame is calculated by Equation (5).

SE = ∑
g∈c,&D,

p (g) loge
1

p(g)
(5)

where p(g) is the probability assigned to the measured value of a random variable for direction C
and displacement D. If the value of SE is higher than zero, then there is a greater possibility for an
abnormal event in the frame. The Shannon entropy for a normal event is zero. So, Shannon entropy
values higher than zero are considered as abnormal events in the frame.

Specifically, the histogram of orientation identifies the events based on the direction of the entrance
and exit level in the video dataset. Then, a histogram of the motion vector magnitudes is computed
to detect the uneven speed of events such as the wrong direction of driving or running. Finally, the
histogram of the entropy of each frame is used to estimate heavy objects such as bags, vehicles, etc.
Commonly, all three histograms can be engaged to identify the unusual events based on its actual
information on the scenes.

3.3.2. FAST (Fast Accelerated Segment Test)

The interest points for the spatiotemporal domain can be extracted after extracting the histogram
for orientation, magnitude, and entropy from the video using the FAST detector. The Fast Accelerated
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Segment Test (FAST) algorithm is the extension of the Feature from Accelerated Segment Test (FAST)
used to extract the interest points in a spatiotemporal domain. It considers pixels in three Bresenham
circles surrounding the interest point in the XY plane, XT plane, and YT plane (X, Y, and Time (T)
dimensions) with a radius r. The circle is labeled for each pixel in a clockwise manner. Similar to the
existing FAST, interest points are extracted if all of the intensities of the nearest pixels are larger than
a threshold value. On the other hand, the new FAST extracts the interest point when the reference
pixel shows both a spatial (XY-plane) and temporal (XT-plane or YT-plane) domain. The existing FAST
algorithm has a drawback, i.e., a high-speed test cannot be generalized well for all cases. The new
FAST detector removes the background details if it is applied on the exact temporal frame differences
and gives a dense set of interest points.

Finally, the optical flow energy of the KLT (L), HOME (H), and FAST (F) descriptors are computed
to generate the feature pair, as in Equation (6):

Op(K, H, F) =
1
N

N

∑
n=1
‖Hn

x , Vn
y ‖2 (6)

The horizontal and vertical optical flow information of the feature descriptors in modulo 2 is
represented by ‖Hn

x , Vn
y ‖2

, where Hn
x represents the horizontal optical flow component and Vn

y denotes
the vertical optical flow components in a video volume V for N pixels. Here, modulo 2 is used as per
the resulting requirement; modulo 1 can also be used, but modulo 2 achieves a better result.

Thus, the proposed feature extraction technique measures the abnormality of motion and
appearance based on orientation, magnitude, entropy, and interest points, as shown in Table 1. Features
are fused to obtain a robust detection result. The fusion of two features, i.e., appearance (spatial) and
motion (temporal) are achieved by the weighted sum of two vectors. The final feature vectors after the
fusion are arranged in a matrix.

Table 1. HOME-FAST algorithm.

Algorithm 1: HOME-FAST Feature Descriptor

1: Procedure HOME-FAST (Ct
i )

2: Ct
i is the cuboid I at time t

3: for every cuboid do
4. KLT feature tracker to extract the optical flow
Information
5. q: Magnitude (M) [22]
6. o: Orientation (R) [22]
7. e: Entropy (E) [33]
8. i: interest points (I) [21]
(Interest points are calculated using FAST)
9. F [q,o,e,i] = His [q,o,e,i] + 1
10: return

3.4. Deep Neural Network for Anomaly Detection and Prediction

A Deep Learning Classifier is used for the implementation of anomaly detection. The decision
of whether the test video belongs to the unusual event or not is generated by the output of the DNN.
The major goals of the DNN in anomaly detection are object classification, object detection, and activity
recognition. The deep learning mechanism automatically learns the features from the input frames as
well as the hand-crafted features to improve the classification performance. The high-level features
extracted from the HOME-FAST feature extraction technique and the low-level input frames are fed as
input to the deep learning mechanism.

The DNN handles a huge amount of video data in the training stage and the optimal convolution
weights to decrease the error in the network are searched. The training stage needs iterative steps
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for the optimization with many cycles to reach the global minima; moreover, it is time-consuming.
The DNN performs the task of anomaly detection, which studies the mapping procedure between the
input and output vectors. The rectifier linear unit is used as an activation function that maps the input
feature descriptor units XJ into its equivalent activation function Yi. Thus, the activation function can
be defined by Equation (7):

Oi = Re LU(XJ) = max (O, XJ) (7)

The rectified linear unit (ReLU) is the most popular activation function for the DNN. The value of
XJ is calculated as:

XJ = bj + ∑
i

wi j yi (8)

In Equation (8), bj denotes the bias elements for every unit j and the weight of each unit is
represented as wi j. Even though the neural network achieves powerful modeling in various research
areas, it cannot achieve good results in video anomaly detection as the final mapping function is very
difficult for the high dimensional feature vectors. There are large intra-class variations in the high
dimension and low resolution of the video, which may be caused by background clutter, viewpoint
change, and various motion speeds and styles. Meanwhile, the high dimension and low resolution of
the video further increase the difficulty in achieving anomaly detection. The performance degradation
on the existing prediction or mapping strategies is eliminated due to the deep and extensive architecture
of the DNN. The major principle behind the DNN is to separate the output layer vectors into k
sub-vectors and implement the divide and conquers strategy to make the regression function easier.
The basic model for the DNN can be represented by Equation (9):

EDNN =
1
F

F

∑
i=1
‖
_
Ot −Ot‖

2

2

(9)

The number of frames can be represented by F,
_
Ot is the estimated output, and Ot is the real

output. The features vectors extracted from the HOME-FAST feature tracker is fed to the network to
find the anomaly events from the target events with a class posterior probability. The loss function
provides a feedback procedure to combine the past frame with the new frame in the stage of a stochastic
gradient-based optimization procedure. The softmax layer is typically the final output layer in a neural
network that performs multi-class classification. The probability of the target events is estimated in the
softmax layer with its activation function defined as:

P(H) =
eH

∑c
c=1 eH

where c=1 to c
(10)

In Equation (10), P(H) is the probability of the activation functions for target events, the last
hidden layer is denoted as H and c is the total number of classes. The final decision-making strategy
is attained at the output layer. The occasions other than the normal event obtained during the
training stage are detected as anomalies. Finally, the DNN attains a mapping function with good
decision-making as the result of a video sequence as typical or abnormal with the strange events.
The DNN is prepared with just normal data. The feature learning technique for anomaly detection does
not require task-based labels, so the network can be easily trained in the absence of anomaly samples.
At testing time, the real data are compared with both the appearance and the motion representations
reconstructed by the deep network and anomalous areas are detected by computing local differences.

4. Experimental Result and Discussion

This section provides the detailed experimental results of the proposed approach. The performance
of the proposed technique was tested with 100+ videos (UCSD, Avenue, and LV datasets) in the
MATLAB simulation platform.
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4.1. Datasets

Descriptions regarding the datasets used for evaluation are listed below.

• UCSD dataset: An openly accessible dataset for the assessment of anomalous recognition and
confinement in localization in crowded scenarios featuring pedestrian walkways [34]. The dataset
was obtained with frames of 238 × 158 pixels in a stationary camera at 10 frames per second.
The movement of non-passerby substances in the walkways and irregular persons on foot are
expected as strange occasions. Both the Peds1 and Peds2 examples of a UCSD standard dataset
were caught on a camera on an alternate area. Every situation in the video groupings (cuts)
contained around 200 frames. In Peds1, there were 34 training and 36 testing videos. Likewise,
Peds2 had 16 training and 12 testing videos.

• Avenue dataset: In the Chinese University of Hong Kong (CUHK) campus avenue, videos were
taken with 30,652 (15,328 training, 15,324 testing) frames [35]. Sixteen training and 21 testing
videos were available in the Avenue dataset. Challenges in the dataset included slight camera
shake (in testing video 2, frames 1051–1100). A couple of anomalies were incorporated into
the training data and some typical examples from time to time showed up in the training data.
The training videos captured normal situations. Testing videos incorporated both ordinary and
anomalous occasions.

• LV dataset: This particular LV dataset [36] was taken under different inside and outside light
changes and camera movement situations. Strange occasions lasted for a few frames to a huge
number of frames. All videos contained various test and training frames. It was extremely difficult
to choose real-world recordings if the uncommon territories contained both a forefront area and
background pixels.

4.2. Setup

In order to test the performance evaluation, all of the frames in a video were first resized to
120 × 160 pixels, which reduced the computational cost of the algorithm. The threshold value for
the foreground estimation was set between 10 and 25 to achieve good results. So, we used 15 as the
threshold value for the estimation. The spatiotemporal length was fixed at five. The spatiotemporal
features were extracted for each frame from a cuboid with the dimensions of 5 × 5 × 3. During
the evaluation of the proposed HOME-FAST feature extraction, we used four bins for magnitude,
orientation, entropy, and interest point ranges. The four magnitude, orientation, and entropy ranges
varied depending on the dimensions. The scale parameter λ1 was equal to 1.2, which controlled
the increasing speed of the logistic curve at the central point while calculating the sigmoid function.
The convolutional neural network (CNN) is one type of DNN that was used in this paper for anomaly
prediction. The five layers of the CNN along with a fully connected layer specification are provided
in Table 2. During the training process, the initial learning rate was 0.003; furthermore, the very last
learning rate was set to 0.00003. During the learning phase, 45 epochs were used. The weights were
initialized using the Xavier algorithm [37]. There are three primary kinds of layers in CNN architecture:
Convolutional (Conv.) layer, Pooling layer, and Fully Connected (FC) layer. The layers of the CNN
have neurons arranged in three dimensions.
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Table 2. Layers and their convolutional neural network (CNN) specification.

Layers Specification

Convolutional (Conv.) 1a 64 (filters: 3 × 3 × 3 and stride: 1 × 1 × 1)
Pooling 1 1 × 2 × 1
Conv. 2a 128 (filters: 3 × 3 × 3 and stride: 1 × 1 × 1)
Pooling 2 2 × 2 × 2
Conv. 3a 256 (filters: 3 × 3 × 3 and stride: 1 × 1 × 1)
Conv. 3b 256 (filters: 3 × 3 × 3 and stride: 1 × 1 × 1)
Pooling 3 2 × 2 × 2
Conv. 4a 512 (filters: 3 × 3 × 3 and stride: 1 × 1 × 1)
Conv. 4b 512 (filters: 3 × 3 × 3 and stride: 1 × 1 × 1)
Conv. 5b 512 (filters: 3 × 3 × 3 and stride: 1 × 1 × 1)
Pooling 5 2 × 2 × 2

Fully Connected (FC) 4096
FC 4096

Soft-max Output

4.3. Observation of Anomalous Events

The anomalous events detected in the video dataset using the proposed approach are shown in
Figures 2–5. Figures significantly show some of the example frames for abnormal event detection.
The small carts, cyclist, bikers, skaters, people walking in the grass or across a walkway and a man
in the trolley are commonly occurring anomalies in the UCSD Peds1 and Peds2 dataset. Figure 2
shows a sample case of Peds1. Furthermore, it shows some cases of false alarms. In crowded scenes,
sometimes one or more normal events are detected as anomalies. A small cart detected as an anomaly
is represented by a box. Figure 3 shows the cyclist, people across a walkway, and uneven movements as
anomalies. The example frame for the Avenue dataset is given in Figure 4, which shows the movement
of people in the wrong direction. Finally, an accident on the roadway was identified as an anomaly for
the LV dataset, which is given in Figure 5.

Figure 2. Illustration outlines for the Peds1 datasets. Inconsistent occasions are featured by boxes.
(a) Original image; (b) background subtraction frame; (c) abnormal event detected frame; and (d)
three-dimensional (3D) plot representation.

Figure 3. Illustration outlines for the Peds2 datasets. Inconsistent occasions are featured by boxes.
(a) Original image; (b) background subtraction frame; (c) abnormal event detected frame; and (d) 3D
plot representation.
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Figure 4. Illustration outlines for the Avenue datasets. Inconsistent occasions are featured by boxes.
(a) Original image; (b) background subtraction frame; (c) abnormal event detected frame; and (d) 3D
plot representation.

Figure 5. Illustration outlines for the LV datasets. Inconsistent occasions are featured by boxes.
(a) Original image; (b) background subtraction frame; (c) abnormal event detected frame; and (d) 3D
plot representation.

4.4. Evaluation Metrics and Result Analysis

The performance estimation of the proposed strategy was computed in the form of the EER
for the three datasets at frame level detection and compared with existing techniques. The existing
approaches were modeled to improve the performance for an indoor environment, but the proposed
approach used in this paper concentrated on the performance (accuracy, EER, and processing time) in
unconstrained scenarios (dense crowds and complex scenes). The Receiver Operating Characteristics
(ROC) curve indicates its precision in the form of its sensitivity. From the ROC curve, note that the
anomaly identification of the proposed approach achieved a better result for the three datasets.

Figures 6–9 show the ROC curves for the three datasets to measure the cut-off points in terms
of sensitivity and specificity. The proposed approach achieved a competitive performance compared
with the existing approaches in References [21,24,38–41].

The frame processing time and EER of the projected approach for the three datasets are
given in Table 3. In Table 4, the EER for the proposed approach is contrasted with those of the
state-of-the-art techniques.

Table 3. EER and frame processing times for the proposed approach.

Dataset EER % Frame Processing Time

UCSD (Peds1) 14.82 5.8 ms
UCSD (Peds2) 11.1 5.4 ms

Avenue 7.4 4.2 ms
LV 14.6 5.3 ms
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Table 4. Anomaly detection EER results of HOME-FAST.

Approach Peds1
EER (%)

Peds2
EER (%)

Leyva et al. [21] 21.15 19.2
Feng et al. [24] 15.1 -

Biswas and Gupta [39] 18 8
Revathi and Kumar [40] 0.75 18

Rabiee et al. [42] 21.3 49
Proposed 14.82 11.1

Figure 6. The LV dataset Receiver Operating Characteristics (ROC) curve.

Figure 7. The UCSD Peds1 dataset ROC curve.
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Figure 8. The UCSD Peds2 dataset ROC curve.

Figure 9. The Avenue dataset ROC curve.

Some existing techniques mainly concentrate on the frame processing time, but do not consider
the motion features (neither optical flow nor background subtraction). Moreover, they use some simple
motion vectors and temporal gradients to achieve the minimum processing time, but this leads to the
degradation of the detection performance. The proposed work in this paper concentrated on both
of these problems and achieved a better result when compared to other recent existing techniques.
The HOME-FAST feature descriptor identifies activities such as a person moving in the wrong direction,
running, robbery, etc. as the entropy used in this approach does not add discriminative details.

In Table 5, EER values for the methods of References [9,43–45] are referred from Reference [46].
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Table 5. Comparison between deep learning-based HOME-FAST and the state-of-the-art techniques.

Approach Peds1
EER (%)

Peds2
EER (%)

HOG3D [43] 50.0 47.7
HOOF [44] 36.4 25.9
MBH [45] 43.4 45.0

MDT-temporal [9] 25.4 25.9
HOFM [47] 33.3 20.7

HOFME [46] 33.1 20.0
Proposed 14.82 11.1

In Reference [43], the author proposed a 3D spatiotemporal local histogram of gradient (HOG3D)
descriptor, which achieved a maximum EER (%). It extracts only the histogram of magnitude and
orientation information. The Histogram of Oriented Optical Flow (HOOF) is also a spatiotemporal
feature descriptor proposed by Chaudhry et al. [44]. This descriptor captures information based on the
optical flow orientation. The extension of HOOF is the Histograms of Optical Flow Orientation and
Magnitude (HOFM) [47], which improves the performance by aggregating the velocity information.
To improve the performance, another descriptor called the Histograms of Optical Flow Orientation,
Magnitude, and Entropy (HOFME) [46] evaluates the entropy of the orientation flow. Our HOME-FAST
method outperforms all of the existing methods by measuring the magnitude, orientation, entropy,
and interest points along with the optical flow information. It achieved a better performance
when compared with the existing approaches in terms of EER. Thus, the proposed approach was
found to extract high-level features such as appearance and motion information accurately to detect
anomaly events.

Table 6 represents the running time during the testing of each frame for the proposed approach
compared with those of the state-of-the-art techniques. The calculation region was divided into four
parts as per the cores and assigning it to four threads made the processing speed 3.2 GHz. This limited
the frame processing time during testing to 5.8 and 5.4 milliseconds for the UCSD Peds1 and UCSD
Peds2 dataset, respectively.

Table 6. Comparison of computational time during testing for the proposed approach and the
state-of-the-art techniques.

Method Platform
Central

Processing
Unit (CPU)

Graphics Processing
Unit (GPU)

Memory
Running time (Milliseconds

per Frame)

UCSD Peds1 UCSD Peds2

Mahadevan et al. [48] - 3.0 GHz - 2.0 GB 25 -
Cong et al. [35] MATLAB 2.6 GHz - 2.0 GB 3.8 -

Lu et al. [49] MATLAB 3.4 GHz - 8.0 GB 0.00697 -
Xu et al. [50] MATLAB 2.1 GHz Nvidia Quadro K4000 32 GB 5.2 7.5

Proposed MATLAB 3.4 GHz - 8.0 GB 5.8 5.4

Figure 10 represents the confusion matrix for all datasets in terms of EER to show the classification
performance of deep learning with low-level and high-level features. We can easily evaluate the True
Positive Rate (TPR) and True Negative Rate (TNR) from the above table. The TPR and TNR for the
UCSD Peds1, UCSD Peds2, Avenue, and LV datasets were calculated as 0.756 and 0.755, 0.569 and
0.568, 0.730 for both, and 0.726 and 0.727, respectively. Thus, the confusion matrix proved that the
deep learning achieved a high classification performance by obtaining a balanced output in terms of
TPR and TNR.
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Figure 10. Confusion matrix for the deep learning in terms of EER.

5. Conclusions

This paper presented a framework called the HOME-FAST descriptor with deep learning.
The main goal was to detect the anomalous behavior of events in crowded scenes. In this method, a
model was presented in the spatiotemporal domain for generating feature vectors based on orientation,
velocity, entropy, and interest points from the cuboids. The performance evaluation was conducted
on the UCSD, Avenue, and LV familiar datasets to obtain the AUC result. On the UCSD dataset, the
results achieved for the Peds2 scenario in the proposed work was better when compared to the results
of the Peds1 scenario. Due to these outcomes, the HOME-FAST deep learning achieved better results
than all of the other previous features. The percentage of accuracy for the proposed approach was
improved when compared with the recent existing methods for the Avenue and LV datasets. Even
though the proposed approach provided a better performance on the anomalous events, there were
some false alarms in the crowded scenes.

In the present scenario, the anomalous activities were identified by considering patches in isolation.
It would be beneficial if multiple patterns are allowed in future research to identify the additional
unusual events.

Author Contributions: Conceptualization, Methodology K.G.G., P.M.; Software, K.G.G.; Validation, K.G.G.;
Investigation, Writing—Original Draft Preparation, K.G.G.; Resources, Review and Editing, Supervision, P.M.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Sodeman, A.A.; Ross, M.P. A Review of Abnormality Detection in Automated Surveillance. IEEE Trans. Syst.
Man Cybern. 2012, 42, 1257–1272. [CrossRef]

2. Chen, C.; Shao, Y.; Bi, X. Detection of Anomalous Crowd Behaviour Based on the Acceleration Feature.
IEEE Sens. J. 2015, 15, 7252–7261. [CrossRef]

3. Kaltsa, V.; Briassouli, A.; Komptsiaris, L. Swarm Intelligence for Detecting Interesting Events in Crowded
Environ. IEEE Trans. Image Process 2015, 24, 2153–2166. [CrossRef] [PubMed]

4. Chen, C.; Shao, Y. Crowd Escape Behaviour Detection and Localization Based on Divergent Centers.
IEEE Sens. J. 2015, 15, 2431–2439. [CrossRef]

5. Chen, D.Y.; Hung, P.C. Visual-Based Human Crowds Behaviour Analysis Based on Graph Modelling and
Matching. IEEE Sens. J. 2013, 13, 2129–2138. [CrossRef]

6. Piciarelli, C.; Foresti, G.L. Surveillance-Oriented Event Detection in Video Streams. IEEE Intell. Syst. 2011, 26,
32–41. [CrossRef]

7. Utasi, A.; Czuni, L. Detecting irregular camera events in time-multiplexed videos. Electron. Lett. 2009, 45,
935–937. [CrossRef]

8. Cai, Y.; Wang, X.; Chen, X.; Jiang, H. Trajectory-based anomalous behaviour detection for intelligent traffic
surveillance. IET Intell. Transp. Syst. 2015, 9, 810–816. [CrossRef]

9. Li, W.; Mahadevan, V.; Vasconcelos, N. Anomaly Detection and Localization in Crowded Scenes. IEEE Trans.
Patterns Anal. Mach. Intell. 2014, 36, 18–32. [CrossRef]

10. Cong, Y.; Yuan, J.; Tang, Y. Video Anomaly Search in crowded scenes via Spatio-temporal Motion Context.
IEEE Trans. Inf. Forensics Secur. 2013, 8, 1590–1599. [CrossRef]

http://dx.doi.org/10.1109/TSMCC.2012.2215319
http://dx.doi.org/10.1109/JSEN.2015.2472960
http://dx.doi.org/10.1109/TIP.2015.2409559
http://www.ncbi.nlm.nih.gov/pubmed/25769154
http://dx.doi.org/10.1109/JSEN.2014.2381260
http://dx.doi.org/10.1109/JSEN.2013.2245889
http://dx.doi.org/10.1109/MIS.2010.38
http://dx.doi.org/10.1049/el.2009.1000
http://dx.doi.org/10.1049/iet-its.2014.0238
http://dx.doi.org/10.1109/TPAMI.2013.111
http://dx.doi.org/10.1109/TIFS.2013.2272243


J. Imaging 2018, 4, 79 16 of 17

11. Li, N.; Wu, X.; Xu, D.; Guo, H.; Feng, W. Spatio-temporal context analysis within video volumes for
anomalies-event detection and localization. Neurocomputing 2015, 155, 309–319. [CrossRef]

12. Biswas, S.; Babu, R.V. Anomaly detection in compressed, H. 264/AVC video. Multimedia Tools Appl. 2015, 74,
11099–11115. [CrossRef]

13. Yuan, Y.; Feng, Y.; Lu, Y. Statistical Hypothesis Detector for Anomalous Detection in Crowded Scenes.
IEEE Trans. Cybern. 2016, 99, 1–12.

14. Singh, D.; Mohan, C.K. Graph formulation of video activities for abnormal event recognition. Pattern Recognit.
2017, 65, 265–272. [CrossRef]

15. Zhang, Y.; Lu, H.; Zhang, L.; Ruan, X.; Sakai, S. Video anomaly detection based on locality sensitive hashing
filters. Pattern Recognit. 2016, 59, 302–311. [CrossRef]

16. Zhou, S.; Shen, W.; Zeng, D.; Fang, M.; Wei, Y.; Zhang, Z. Spatial-temporal convolution neural networks for
anomaly detection and localization in crowded scenes. Image Commun. 2016, 47, 358–368. [CrossRef]

17. Cosar, G.; Donatiello, V.; Bogorny, C.; Garate; Alvares, L.O.; Brémond, F. Toward Abnormal Trajectory and
Event Detection in video Surveillance. IEEE Trans. Circuits Syst. Video Technol. 2017, 27, 683–695. [CrossRef]

18. Sun, Q.; Liu, H.; Harada, T. Online growing neural gas for anomaly detect in changing surveillance scene.
Pattern Recognit. 2017, 64, 187–201. [CrossRef]

19. Cheng, K.W.; Chen, Y.T.; Fang, W.H. An efficient subsequence search for video anomaly detection and
localization. Multimedia Tools Appl. 2016, 75, 15101–15122. [CrossRef]

20. Pennisi, A.; Bloisi, D.D.; Iocchi, L. Online real-time crowd behaviour detection in video sequences.
Comput. Vis. Image Underst. 2016, 144, 166–176. [CrossRef]

21. Zhang, T.; Jia, W.; Yang, B.; Yang, J.; He, X.; Zheng, Z. MOWLD: A robust motion image descriptor for
violence detection. Multimedia Tools Appl. 2017, 76, 1419–1438. [CrossRef]

22. Bertini, M.; Bimbo, A.D.; Seidenari, L. Multi-scale and real-time non-parametric approach for anomaly
detection and localization. Comput. Vis. Image Underst. 2012, 116, 320–329. [CrossRef]

23. Kumar, D.; Bezdek, J.C.; Rajasegarar, S.; Leckie, C.; Palaniswami, M. A Visual-Numeric Approach to
clustering and Anomaly Detection for Trajectory Data. Vis. Comput. 2017, 33, 265–281. [CrossRef]

24. Leyva, R.; Sanchez, V.; Li, C.T. Video Anomaly Detection with Compact Feature Sets for Online Performance.
IEEE Trans. Image Process. 2017, 26, 3463–3478. [CrossRef] [PubMed]

25. Zhang, Y.; Lu, H.; Zhang, L.; Ruan, X. Combining motion and appearance cues for anomaly detection.
Pattern Recognit. 2016, 51, 443–452. [CrossRef]

26. Bao, T.; Karmoshi, S.; Ding, C.; Zhu, M. Abnormal event detection and localization in crowded scenes based
on PCANet. Multimedia Tools Appl. 2017, 76, 23213–23224. [CrossRef]

27. Xu, D.; Song, R.; Wu, X.; Li, N.; Feng, W.; Qian, H. Video anomaly detection based on a hierarchical activity
discovery within spatio-temporal contexts. Neurocomputing 2014, 143, 144–152. [CrossRef]

28. Feng, Y.; Yuan, Y.; Lu, X. Learning deep event models for crowd anomaly detection. Neurocomputing 2017,
219, 548–556. [CrossRef]

29. Ribeiro, M.; Lazzaretti, A.E.; Lopes, H.S. A study of deep convolutional auto-encoders for anomaly detection
in videos. Pattern Recognit. Lett. 2018, 105, 13–22. [CrossRef]

30. Xu, D.; Ricci, E.; Yan, Y. Learning deep representation of appearance and motion for anomalous event
detection. arXiv, 2015, arXiv:1510.01553.

31. Caetano, C.A.; De Melo, V.H.; dos Santos, J.A.; Schwartz, W.R. Activity Recognition based on a
Magnitude-Orientation Stream Network. In Proceedings of the 2017 30th SIBGRAPI Conference on Graphics,
Patterns and Images (SIBGRAPI), Niteroi, Brazil, 17–20 October 2017; pp. 47–54.

32. Bouguet, J.Y. Pyramidal implementation of the affine lucaskanade feature tracker description of the algorithm.
Intel Corp. 2001, 5, 1–10.

33. Sharif, M.H.; Djeraba, C. An entropy approach for abnormal activities detection in video streams.
Pattern Recognit. 2012, 45, 2543–2561. [CrossRef]

34. Statistical Visual Computing Lab. UCSD Anomaly Data Set. 2014. Available online: http://www.svcl.ucsd.
edu/projects/anomaly/ (accessed on 26 February 2013).

35. Lu, C.; Shi, J.; Jia, J. Abnormal event detection at 150 FPS in MATLAB. In Proceedings of the 2013 IEEE
International Conference on Computer Vision (ICCV), Sydney, Australia, 1–8 December 2013; pp. 2720–2727.

http://dx.doi.org/10.1016/j.neucom.2014.12.064
http://dx.doi.org/10.1007/s11042-014-2219-4
http://dx.doi.org/10.1016/j.patcog.2017.01.001
http://dx.doi.org/10.1016/j.patcog.2015.11.018
http://dx.doi.org/10.1016/j.image.2016.06.007
http://dx.doi.org/10.1109/TCSVT.2016.2589859
http://dx.doi.org/10.1016/j.patcog.2016.09.016
http://dx.doi.org/10.1007/s11042-015-2453-4
http://dx.doi.org/10.1016/j.cviu.2015.09.010
http://dx.doi.org/10.1007/s11042-015-3133-0
http://dx.doi.org/10.1016/j.cviu.2011.09.009
http://dx.doi.org/10.1007/s00371-015-1192-x
http://dx.doi.org/10.1109/TIP.2017.2695105
http://www.ncbi.nlm.nih.gov/pubmed/28436865
http://dx.doi.org/10.1016/j.patcog.2015.09.005
http://dx.doi.org/10.1007/s11042-016-4100-0
http://dx.doi.org/10.1016/j.neucom.2014.06.011
http://dx.doi.org/10.1016/j.neucom.2016.09.063
http://dx.doi.org/10.1016/j.patrec.2017.07.016
http://dx.doi.org/10.1016/j.patcog.2011.11.023
http://www.svcl.ucsd.edu/projects/anomaly/
http://www.svcl.ucsd.edu/projects/anomaly/


J. Imaging 2018, 4, 79 17 of 17

36. Leyva, R.; Sanchez, V.; Li, C.T. The LV dataset: A realistic surveillance video dataset for abnormal event
detection. In Proceedings of the 2017 5th International Workshop on Biometrics and Forensics (IWBF),
Coventry, UK, 4–5 April 2017; pp. 1–6.

37. Glorot, X.; Bengio, Y. Understanding the difficulty of training deep feedforward neural networks.
In Proceedings of the Thirteenth International Conference on Artificial Intelligence and Statistics, Sardinia,
Italy, 13–15 May 2010; pp. 249–256.

38. Wang, C.; Yao, H.; Sun, X. Anomaly detection based on spatio-temporal sparse representation and visual
attention analysis. Multimedia Tools Appl. 2017, 76, 6263–6279. [CrossRef]

39. Biswas, S.; Gupta, V. Abnormality detection in crowd videos by tracking sparse components. Mach. Vis. Appl.
2017, 28, 35–48. [CrossRef]

40. Revathi, A.R.; Kumar, D. An efficient system for anomaly detection using deep learning classifier. Signal Image
Video Process. 2017, 11, 291–299. [CrossRef]

41. Li, S.; Yang, Y.; Liu, C. Anomaly detection based on two global grid motion templates. Signal Process.
Image Commun. 2018, 60, 6–12. [CrossRef]

42. Rabiee, H.; Mousavi, H.; Nabi, M.; Ravanbakhsh, M. Detection and localization of crowd behavior using a
novel tracklet-based model. Int. J. Mach. Learn. Cybern. 2017, 8, 1–12. [CrossRef]

43. Klaser, A.; Marszałek, M.; Schmid, C. A spatio-temporal descriptor based on 3D-gradients. In Proceedings of
the British Machine Vision Conference, Leeds, UK, 1–4 September 2008.

44. Chaudhry, R.; Ravichandran, A.; Hager, G.; Vidal, R. Histograms of oriented optical flow and binet-cauchy
kernels on nonlinear dynamical systems for the recognition of human actions. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition (CVPR 2009), Miami, FL, USA, 20–25 June 2009.

45. Wang, H.; Klser, A.; Schmid, C.; Liu, C.-L. Dense trajectories and motion boundary descriptors for action
recognition. Int. J. Comput. Vis. 2013, 103, 60–79. [CrossRef]

46. Colque, R.V.H.M.; Caetano, C.; de Andrade, M.T.L.; Schwartz, W.R. Histograms of Optical Flow Orientation
and Magnitude and Entropy to Detect Anomalous Events in Videos. IEEE Trans. Circuits Syst. Video Technol.
2017, 27, 673–682. [CrossRef]

47. Colque, R.V.H.M.; Junior, C.A.C.; Schwartz, W.R. Histograms of optical flow orientation and magnitude
to detect anomalous events in videos. In Proceedings of the 2015 28th SIBGRAPI Conference on Graphics,
Patterns and Images (SIBGRAPI), Salvador, Brazil, 26–29 August 2015.

48. Mahadevan, V.; Li, W.; Bhalodia, V.; Vasconcelos, N. Anomaly detection in crowded scenes. In Proceedings
of the 2010 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), San Francisco, CA, USA,
13–18 June 2010.

49. Cong, Y.; Yuan, J.; Liu, J. Sparse reconstruction cost for abnormal event detection. In Proceedings of the
2011 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Providence, RI, USA, 20–25
June 2011.

50. Xu, D.; Yan, Y.; Ricci, E.; Sebe, N. Detecting anomalous events in videos by learning deep representations of
appearance and motion. Comput. Vis. Image Underst. 2017, 156, 117–127. [CrossRef]

© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1007/s11042-015-3199-8
http://dx.doi.org/10.1007/s00138-016-0800-8
http://dx.doi.org/10.1007/s11760-016-0935-0
http://dx.doi.org/10.1016/j.image.2017.09.002
http://dx.doi.org/10.1007/s13042-017-0682-8
http://dx.doi.org/10.1007/s11263-012-0594-8
http://dx.doi.org/10.1109/TCSVT.2016.2637778
http://dx.doi.org/10.1016/j.cviu.2016.10.010
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	State-of-the-Art Anomaly Detection Methods 
	Feature Extraction 
	Trajectory Analysis and Clustering 
	Supervised Learning 
	Unsupervised Learning 
	Deep Learning 

	Deep Learning with HOME-FAST Spatiotemporal Descriptor for Abnormality Detection 
	Input Database 
	Pre-Processing 
	Spatiotemporal HOME-FAST Feature Extraction 
	HOME (Histogram of Orientation, Magnitude, and Entropy) 
	FAST (Fast Accelerated Segment Test) 

	Deep Neural Network for Anomaly Detection and Prediction 

	Experimental Result and Discussion 
	Datasets 
	Setup 
	Observation of Anomalous Events 
	Evaluation Metrics and Result Analysis 

	Conclusions 
	References

